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interactions between blocks and treatments,
periods and sequences. Because the squares are
replicated spatially (blocks), then periods are
crossed with squares. If the squares are replicated
through time, then the periods would be different
foreachsquareandperiodswouldbenestedwithin
square (or block). In these analyses, all terms are
tested against residual unless there are replicate
subjects for each sequence, e.g. replicate focal
plants for each sequence of treatments. Then there
would also be a subjects within-sequence term that
would be used for testing the sequence effect. In
the example from Feinsinger et al. (1991), there was
only one subject (focal plant) per sequence so there
was no subject within-sequence term.

The limitations of these designs are the same
as Latin square designs, primarily the assumed
lack of interactions between treatments, periods
and subjects and the few df for the residual, espe-
cially when carryover effects are separated out as
a source of variation. Also, there are the usual dif-
ficulties of handling missing observations and the
requirement that the number of treatments
needs to match the number of subjects or periods.
These designs are most commonly used in
research on the responses of animals to different
treatments where the number of animals is very
restricted and both repeated measures on animals
and through multiple time periods are needed.

10.12 Generalized randomized
block designs

As we have emphasized, RCB designs are simply
analyzed as unreplicated factorial ANOVAs. If rep-
licates are possible within each combination of
block and treatment, then we have a generalized
randomized block design (GRB) whose advantages
over the usual randomized block design include:

1. no need for any assumption of additivity,
2. separation of interaction effects from resid-

ual which may result in smaller MSResidual and more
powerful test of treatments (Potvin 1993), and

3. better handling of missing values.

A GRB design that includes replicate experi-
mental units for each treatment within each
block is analyzed with a standard two factor linear

model as described in Chapter 9 with a test for the
factor A by block interaction. Note that random-
ization (random allocation of experimental units
to treatments) is still restricted to n experimental
units within each block, compared with a CR fac-
torial design in which experimental units would
be randomly allocated to each combination of the
two factors. It is important that the “replicates”
for a GRB design be at the appropriate scale, oth-
erwise the usual factorial linear model is not
applicable (Bergerud 1996). We must replicate the
experimental units to which the levels of factor A
are applied within each block, e.g. we must repli-
cate leaves with and without domatia in each
block in the example from Walter & O’Dowd
(1992). If we simply subsample from each unrepli-
cated treatment–block combination, e.g. we
measure the size of individual mites in each com-
bination of block (leaf pair) and treatment (with
or without domatia), we can not use a two factor
ANOVA model. We actually have a subsampled
randomized block ANOVA where the analysis is as
described in Table 10.10 for our fictitious modifi-
cation of the Walter & O’Dowd (1992) experiment.
Here, the non-existent true replicates for the two
factor ANOVA model (replicate leaves for each
treatment–block combination) are included in
the ANOVA table to illustrate that the subsampled
mites are not the appropriate replicates for
testing any of the higher terms in the model
(Bergerud 1996) – this is just a more complicated
example of “pseudoreplication” (Hurlbert 1984;
see also Chapter 7). Like Bergerud (1996), we
suspect that many biologists mistake subsam-
pling for true replication and would incorrectly
analyze this design in Table 10.10 as a completely
randomized two factor ANOVA.

10.13 RCB and RM designs and
statistical software

Most statistical software distinguishes between
RCB and RM designs in the way the data need to
be coded. For an RCB design, each row in the data
file represents an individual experimental unit,
i.e. a treatment–block combination, and the data
for the response variable are in a single column.
The columns in the data file will be as follows.
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replace the bar by a single point, without losing
any information). In Tufte’s terminology, we’d be
improving the data:ink ratio – the amount of
information conveyed, relative to the amount of
ink needed to print it.

19.3.2 Line graph (category plot)
Line graphs are like bar graphs except the top of
the bar is replaced by a symbol and the adjacent
symbols are joined by straight lines (Figure 19.6).
They are used when the categorical variable on
the X-axis can be ordered, or is quantitative, par-
ticularly to plot time series. The symbol can repre-
sent a single value or the sample mean (or

median, etc.) – the comments in Section 19.4
about error bars also apply here. These plots are
most often used for interaction plots (Chapter 9),
and they work very well for this purpose.

It is very important to appreciate that the lines
in this case may simply indicate a trend in the
(mean) values, without any interpolation. This is
particularly the case for interaction plots for fixed
effects in analyses of variance – there are by defi-
nition no other categories other than those used
in the analysis. The line connecting the symbols
does not represent any sort of formal relationship
between Y and X, and could be omitted (Figure
19.7). 

If we wish to include a second grouping vari-
able, then it can be represented by an additional
series of points, with different symbols (or differ-
ent colors – see Fig. 1 in Cleveland 1994) and/or
line styles (Figure 19.8). 

19.3.3 Scatterplots
We have already discussed scatterplots as an
exploratory tool in Chapters 4 and 5. They can also
be very effective ways of presenting a bivariate
relationship. For example, the scatterplot can
include a line that represents a regression or
smoothing function fitted to the observations
(Figure 19.9). Note that the line in Figure 19.9
extends only to the edge of the range of X-values.
Many computer graphics packages default to
drawing the fitted curve across the entire X-axis
(see Figure 19.10). This is inappropriate, as we have

502 PRESENTATION OF RESULTS

Figure 19.5. Three-dimensional plot of same data as in
Figure 19.2. See how one of the groups is almost completely
obscured.

Figure 19.6. The data from Figure 19.1 displayed as a
simple line graph (without error bars, for simplicity).

Figure 19.7. A minimalist graph of the data in Figure 19.6,
with the mean of each group now represented by a single
point.



no information about the relationship beyond the
largest and smallest X-values in our sample – even
a simple linear relationship might change shape
outside our range. A good example of that phe-
nomenon is when we estimate regresssion models
for relationships that logically must pass through
the origin (e.g. amount of food vs number of
limpets m�2, mass vs length, etc.), but where the
estimated line has a non-zero intercept. The
model may be estimated reliably for the range of
our data, and because we know that the curve
passes through the origin, we therefore know that
the line must change slope or shape outside that
data range (Figure 19.10; see also Chapter 5).

We could also plot confidence intervals about
the regression lines or confidence ellipses (Figure
19.11; Sokal & Rohlf 1995) and non-parametric
confidence kernels (Silverman 1986) can be
included to indicate our level of confidence in the
centroid (the mean of the two variables in multi-
dimensional space). Details on these methods
were provided in Chapter 5.

Multiple groups can be indicated on the scat-
terplot by simply using different symbols (or fill
patterns or colors) for each group.

19.3.4 Pie charts
A pie chart is a circle (or a “pie”) where each cate-
gory’s value is represented by a size of its section
or slice of the circle (Figure 19.12). The different
sections can be further emphasized by different
fill patterns or colors. 

Pie charts are very commonly used in business
graphics (hence their presence in most presenta-
tion graphics software) but have a much reduced
role in scientific graphics and none in statistical
graphics. Tufte (1983) argued that they should
never be used because their “data-density” is low
and they fail to order numbers along a visual
dimension. A reader can’t be sure whether to look
at the angle or the area to get an idea of how big
each group is. Contrast that with a bar or line
chart, where there is only one interpretation of
the height of the bar or point. It becomes even
worse if you allow the software to produce a

DISPLAYING SUMMARIES OF THE DATA 503

Figure 19.8. The data from Figure 19.2 plotted as a pair of
lines. Compare this with the pseudo-three-dimensional
display in Figure 19.5.

Figure 19.9. A basic scatterplot, with a least-squares
straight line fitted through the observations.



three-dimensional aspect to this information
(Figure 19.13)

19.4 Error bars

Any graphical or tabular representation of means
should include some measure of the error asso-
ciated with the estimate of the mean. Common
measures of error include the standard deviation (a

measure of variability between observations in the
sample), the standard error (a measure of precision
for the sample mean) and 95% or 99% confidence
intervals (Chapter 2). Error bars on graphs are
usually represented by a straight line that is sym-
metrical on either side of the mean. If we are using
a bar graph with filled bars, one-sided error bars
can be used. The length of the line in each direction
indicates one standard deviation or one standard
error so the total error bar is two standard errors or,
alternatively, the 95% confidence interval.

One problem with error bars on complex
graphs with many plotting symbols is that the
error bars overlap with each other and other plot-
ting symbols, making the graph messy and diffi-
cult to read. In such cases, one alternative is to
present the largest and smallest error bars only in
one section of the plot to indicate the range of var-
iability or precision in the data. 

Where a plot of means relates to a specific anal-
ysis, such as a simple ANOVA model, illustrating
individual standard deviations or standard errors
may not be crucial. In doing the ANOVA, you have
assumed that the variances of the different
groups are similar and have compared the groups
using a pooled estimate of the variation within
groups (i.e. the MSResidual term). In showing a single
error bar, you may be representing more accu-
rately the variation used in the analysis, whereas
the individual errors for the particular treatments
may differ from this pooled value, and give the
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Figure 19.10. Scatterplot with inappropriate line fitted
through the observations.

Figure 19.11. Scatterplots with confidence intervals on the
regression line (left) or a confidence ellipse (right).



reader an indication of whether the assumption
of homogeneous variance is appropriate.

In some more complex linear models, particu-
larly for designs involving nested factors (includ-
ing repeated measures designs) or combinations
of fixed and random factors, a simple standard
error or the MSResidual may provide misleading
information. As discussed in Chapters 9–12, many
different hypotheses are tested in complex
models, often using different error terms. As a
simple example, consider a two-level nested
ANOVA design, with groups as the main factor,
plots nested within groups as the nested factor,
and replicate observations within plots (Chapter
9). We test the effects of groups against variation
among plots within groups, rather than using the
within-plots variation. Therefore, if we are
describing the differences between groups, we
should show some measure of the appropriate
variation within groups.

If we use the raw data file (or even the MSResidual

from the ANOVA), and plot means and standard
errors using common statistical packages, the
means may be reliable, but the error bars that are
produced by this procedure may bear little rela-
tion to the variances used to test particular
hypotheses. 

The problem is best illustrated with an
example. Figure 19.14 shows the graphical
summary from three simulated data sets for a
nested ANOVA design. All three data sets have four
groups, four subgroups within each group, and
four replicates per subgroup. The group means
were the same across the data sets, as was the vari-
ation within subgroups (i.e., the MSResidual was con-
stant). The level of variation between subgroups
varied between the data sets, and the graphs show
two measures of error.

• The left hand error bar represents the output
from a standard statistics package (SYSTAT)2,
from the raw data file. In this figure, the
standard error is calculated from all
observations within each main group,
regardless of the subgroups, i.e., it pools
replicate and subgroup variances, and uses the
total number of observations in each group as
the sample size.

• The right-hand error bar of each pair is based
on the variation among subgroups, and was
obtained by taking the means for each
subgroup, providing a single value for each
subgroup, and then plotting means and errors
from those data. 

The most important thing to note is that the
two error bars are similar in some cases, but very
different in others, depending on the patterns of
variance in a particular data set. When the varia-
tion among plots is highest, the “standard” error
bars are completely misleading. In the three data
sets, the means based on pooling across sub-
groups will be the same as those calculated from
the subgroup means, as long as the number of rep-
licates per subgroup is constant. If the design is
unbalanced, the means obtained by the two
methods will also be different.
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Figure 19.12. A basic two-dimensional pie chart of the
same data as in Figure 19.1.

Figure 19.13. One of the pinnacles of awful graphics, the
pseudo-three-dimensional pie chart.

2 The error bars calculated by SYSTAT ignore the structure of
the data, and pool all the subgroups into one set of replicates.



This situation becomes
more complex if we consider,
for example, groups by trials
or repeated measures designs
(Chapter 11). The test of the an
interaction involving the between-subjects and
within-subjects factors is made using the variation
among subjects across the repeated factor. For
example, if the repeated factor is time, the groups
by time effect, i.e. the variation in temporal pro-
files between groups, is tested using the variation
through time of the subjects within groups. An
overall residual error term will be worthless in this
case, and the default output from most software
packages would be for error bars to depict the vari-
ation among subjects at each level of the within-
subjects factor. These error bars might be
appropriate for a completely randomized design,
but will not have any clear relationship to the
denominators used to test the terms of most inter-
est.

19.4.1 Alternative approaches
Our strongest recommendation is that you think
about the message you want the reader to get,
and then think about the measure of variance
that is appropriate for this message. The best indi-
cation comes from the error term used to test the
hypothesis in question, in the case of ANOVA
models.

The correct alternative will not always be
obvious. To return to the example of the nested
ANOVA design, we can identify at least five differ-
ent error terms that we could calculate.

1. The �MSResidual from the ANOVA.
2. Standard deviations from individual

groups, from the raw data file.
3. Standard deviations from a file of means

for each subgroup or plot.
4. The �MSSubgroup term from the ANOVA,

which averages the variation among subgroups
across the groups.

5. The square root of the variance component
associated with groups, extracted from the
MSSubgroups.

3

As argued earlier, option 1 is incorrect, as is
option 2, since they use error terms unrelated to
the hypothesis in question. Option 3 provides one
correct answer, and results in different error bars
for each group. Option 4 is a reasonable approxi-
mation, but it leads to an error term that, like
option 2, includes two kinds of variation (see
Footnote 3). Depending on the relative sizes of the
two variances involved, this option may or may
not produce an error close to the correct one.
Option 5, like option 3, generates an appropriate
error, and will produce similar results – given
equal sample sizes, it is a pooled estimate of the
variation among subgroups, and will be close to
the average of the set of subgroup variances.

To see how these options produce different
answers, we have used the artificial data sets seen
already on Figure 19.14 to produce the data in
Table 19.3. You should note that in going from
standard deviations to standard errors, options 1
and 2 use the total sample size, i.e. number of sub-
groups�number of replicates per subgroup. In
the above example, with four and four, respec-
tively, the standard errors become quite different.
If we take options 3 and 5 as being appropriate,
you can see that the other options provide erratic,
and misleading error calculations. 

Given that most readers tend to look at graphs,
and interpret your results for themselves, based
on the differences among groups and the error
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Figure 19.14. Depiction of error
bars for three simulated data sets,
from a nested ANOVA design.

3 Recall that the Expected Mean Squares for subgroups in a
nested ANOVA model is given by 	

�
2� n	2

subgroups, and then
	2

subgroups can be calculated by (MSSubgroups�MSResidual)/n.



bars, you risk distracting the readers, or having a
reader sceptical of your results, just because you
provided other than the most relevant data.

19.5 Oral presentations

Although publishing our work in peer-reviewed
outlets such as scientific journals is the primary
way of making contributions to the field (and of
assessing our productivity), talking about our work
is a crucial part of publicizing that work, telling
colleagues about work in progress, and “advertis-
ing” yourself when in the market for scientific jobs.
Presenting information clearly and without dis-
tractions is just as important for oral papers, with
a few additional considerations. There is a range of
books and papers offering thoughts on how to con-
struct an effective talk, and, here, we focus on how
you display your data and analyses.

Most scientists now prepare talks using a
range of graphics packages, most of us lack any
training in graphical design, and a substantial
number of us have poor taste. These three factors
can combine to produce a wide range of distract-
ing graphical displays. While we don’t pretend to
be style gurus (or may pretend, but unconvinc-
ingly!), we can offer some thoughts about prepar-
ing audiovisual aids.

19.5.1 Slides, computers, or overheads?
One of the first decisions to make is the kinds of
tools you’ll use to display the information. You

will have three main options, assuming that most
of us won’t use the blackboard for a conference
talk or seminar. Computer-based presentations
are becoming easier, as more and more venues
offer computer projections. Slides remain a very
reliable, compact way of presenting information,
and offer very high resolution, while overhead
projection sheets are completely reliable, and also
high resolution.

When deciding which of these you should use,
you should consider the following.

• The venue. 
* How big is the room? Many overhead projec-

tors don’t produce large images, because
they can’t be moved far enough from the
stage, so you might want to avoid them in big
venues.

* Is the room likely to have good lighting con-
trols? If it can’t be darkened, as can be the
case at some convention facilities, you may
find that your slides can’t be seen, and that
overheads are much brighter.

* What is your target audience familiar with?
In the past, most people giving talks at
scientific conferences used slides. Meetings
involving government or industry people,
and less formal academic meetings, typically
involved overhead projections, with slides
being rare. This difference would not affect
your preparation of the talk, it was a guide to
the kinds of facilities you could expect when
you arrived to speak. Now, it is very common
to have computer projection facilities avail-
able, regardless of the venue.

* Do you have confidence in the computer
facilities? When you turn up for your talk,
you may find a beautifully equipped room,
with a computer with the latest version of
your graphics package, and you’ll just need
to insert your disk (or even drag your presen-
tation over the internet). Alternatively, you
may find that
– “computer projection facilities” means a

plug in the wall, and you are expected to
bring a computer with you, or 

– there’s an antique Macintosh, when you
prepared your talk using the newest
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Table 19.3 Error bars produced by five different
methods, for a two factor nested design, with three
different data sets

Option Data set 1 Data set 2 Data set 3

1 1.10 1.10 1.10
2 1.60 1.22 2.60
3 1.42 0.79 2.70
4 2.88 1.66 5.42
5 1.33 0.63 1.33

Note:
The numbers are standard deviations.



version of a Windows graphics package,or
– you love an obscure graphics package, used

it to prepare your talk, but the computers
in the venue lack that program, or

– you scanned some beautiful images into
your presentation, then needed a special
high-capacity disk to store your talk. The
computer in the room won’t read those
disks, or

– . . . you can add a range of other, real-world
disasters to this list.

• What kind of talk is it? Will you give it once, or
is it to be a travelling show that you expect to
give a few times, such as a talk about your PhD
research? You are likely to give a PhD talk for
at least a year or two, and it’s probably worth
making slides, but, later in your career, you
may be asked to give more general or synthetic
talks, on a range of topics, and you might write
a new talk each time, with little intention of
repeating it. One advantage of computer-based
presentations is that they can be changed at
no cost, while changing a slide costs money
and time. It may also be that working in this
way encourages you to create a fresh talk,
rather than planning your talk based on the
slides that you happen to have available.

• How organized are you? If you do everything at
the last moment, computer-based
presentations offer the most flexibility. It’s even
possible to change your overheads in response
to some profound (or inflammatory) thought
offered by the speaker preceding you in the
program. You can also fix the spelling error you
discovered when running through your talk.

• Where are you going to speak? Slides are the
most secure option – they are compact, can be
carried with you on planes, aren’t affected by
magnetic fields, etc. Computer disks are the
least stable option, but you can improve things
by making sure that you can get another copy
of your presentation over the internet if the
worst happens, and you can take multiple
copies, spread through your baggage, in the
heel of your shoe, etc.

19.5.2 Graphics packages
Whatever medium you choose, you will almost cer-
tainly use one of the common graphics packages to

construct your audiovisuals. These packages are
written for business users, and the software devel-
opers apparently think that business users love to
use extraneous, garishly colored graphics as back-
grounds. These packages also often lack many of
the things we need for scientific purposes – for
example, most lack the capacity to plot error bars
easily.

We offer a few pieces of opinion (based on
extensive, highly selective sampling of our col-
leagues’ biases) about ways to put together a pres-
entation.

• Keep the backgrounds simple. Use a uniform
or lightly graded background. Complex,
multicolored backgrounds will obscure parts
of the text.

• Keep the number of fonts to a minimum.
• Strange transitions between slides – blinds,

curtains to the left, checkerboards – and text
flying in from all directions can be done easily
from most software packages. It tends to polar-
ize your audience. Mixing different transitions
and patterns of appearance of objects should
be avoided. Doing this demonstrates to the
audience that you know how to use the bells
and whistles of the software, but it also tells
the audience something else about you . . .
almost certainly an impression you’d like to
avoid.

19.5.3 Working with color
As a general rule, graphics packages offer sets of
colors that are recommended for producing a par-
ticular overall look for your presentation. 

• We suggest that you choose a particular set, and
use exactly those colors, rather than designing
your own combination. The color combinations
that you select are, with all due respect, likely to
be awful, and consist of colors that shouldn’t be
combined, no matter what your drunken
friends think. In addition, many packages offer
an option to switch from a color scheme for
35 mm slides or computer graphics (often a dark
background and light text), to one designed for
overhead projection (a light background, dark
text). This switch can be made with a single
mouse click, but if you have redefined the color
palette, you may lose this ability.
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• There is a substantial literature on color per-
ception, and a good understanding of working
color combinations. You may want to read
some of that literature, and, again, consult
Tufte (1983) as an entry point.

• Remember color blindness and its incidence
among the general population. There are some
color combinations that are offered by many of
the graphics packages, particularly red and
green, which will be indistinguishable to as
many of 20% of your audience (especially if
you are in a particularly male-dominated forum).

• As a general rule, use solid fill patterns, and
distinguish groups by different colors for
audiovisuals (cf. contrasting fill patterns for
printed material).

19.5.4 Scanned images
To avoid switching between slides and computer,
you may decide to scan some images into your
presentation. Scanned images are very large, espe-
cially if they are stored with fine color detail (e.g.
16.7 million colors on the palette). Individual
images can be quite a few megabytes, but you may
not need high resolution everywhere.

• If you are converting your presentation into
slides, you should scan any images at the
highest resolution possible, because 35 mm
film is capable of fine details. 

• If you are preparing overheads, the resolution
will depend on the capabilities of your printer.
Use high resolution.

• If you are using computer projection, most
systems operate at only 800�600 pixel
resolution. Therefore, if your scanned image
exceeds this size, the finer details can’t be
displayed. You should reduce the resolution to
something only slightly finer (i.e. slightly more
pixels) than will be displayed. Most images are
also scanned with many colors. Reducing the
number of colors can dramatically decrease
the file size; try reducing the number of colors,
and see if the image is degraded. The net result
will be a presentation file that is more
compact, and fits onto fewer computer disks
(at least using twentieth-century technology).

Finally, remember that graphics file types vary
in whether they compress the information. Some

store the raw graphics information, with no com-
pression. Others compress the file size by search-
ing the image for blocks of identical color, and
replacing information about individual pixels
with a description of the boundaries of the block
and the color. Other file formats, such as JPEG, sac-
rifice some information for compaction.

19.5.5 Information content
Bear in mind that, in a printed paper, we can place
large amounts of information on a figure, with
the reader having time to digest that information.
When presenting the material orally, there’s
usually less time for the audience to assimilate
the information. More importantly, you are speak-
ing more or less continuously, and if you produce
an audiovisual with large amounts of informa-
tion, you’ll notice a large part of the audience
immediately shift their focus away from you, to
concentrate on reading. At that time, you’ve lost
control of the audience, and they won’t be listen-
ing to you. They may also not be getting the infor-
mation that you want them to.

In general, you should remove all extraneous
information from the figures. As part of your talk,
you should guide the audience through the par-
ticular figure – show them the key patterns,
explain what the different symbols represent,
and so on. That way, you control the emphasis
that is placed on the information, and the audi-
ence feels that they are getting a scientist’s view
of some information, rather than reading
another paper.

You probably do not need to show results of
statistical tests on the figure. For example, a
regression equation, together with F-ratios and P-
values, adds unneccesary clutter to a scatterplot,
and there is often a collective groan in the audi-
ence when the next slide is an analysis of variance
table. Our strong view is that, ethically, if you talk
about a pattern in your data – a difference in
groups, a correlation, etc. – you are describing the
results of a significant analysis. The audience
takes this on trust, and adding the analytical
results to your figure or table doesn’t help.
During the talk, there is no chance to scrutinize
your experimental design and analysis, to check
that you did everything appropriately, so they
must take the analysis on trust, anyway.
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19.6 General issues and hints

• Presenting results clearly is a neglected part of
publicizing scientific work.

• Most statistical packages produce considerable
redundancy in their output, and omitting ele-
ments of redundancy produces cleaner, more
concise, descriptions of results.

• Most graphics packages produce styles of
graphs and allow choices of fill pattern and
ornamentation that obscure, rather than
clarify, results.

• Graphical illustration of results should be tai-
lored to the audience, and optimal use of
colors, fill patterns, and explanatory text will
be very different for published scientific
papers and oral presentations.

• In preparing illustrations, decide what pattern
in the data you wish to illustrate, then identify
the kind of variation that was the background
against which the particular patterns were
assessed. This variation is an appropriate can-
didate for error bars.
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accelerated bootstrap 26
adaptive sampling 157
added variance component 188
additivity and transformations 67,

280
adjusted r2 137
adjusted univariate F tests 282–3, 319
adjusting significance levels 49–50
agglomerative hierarchical clustering

489–91
Akaike information criterion (AIC)

139, 370–1
alternative hypothesis 33–4
analysis of covariance (ANCOVA) 339

assumptions 348–9
comparing ANCOVA models 348
covariate values similar across

groups 349
designs with two or more

covariates 353–4
factorial designs 354–5
heterogeneous slopes 349

comparing regression lines 352
dealing with heterogeneous

within group regression slopes
350–2

Johnson–Neyman procedure,
Wilcox modification 350–1

testing for homogeneous within
group regression slopes
349–50

linear effects model 342–6
nested designs with one covariate

355–6
null hypotheses 347–8
partly nested models with one

covariate 256–7
robust 352–3
single factor 339–48
specific comparison of adjusted

means 353
analysis of deviance 399–400
analysis of similarities (ANOSIM)

484–5
analysis of variance (ANOVA) 

diagnostics 194–5
factorial designs 230–2
linear effects model 178–84,

210–13, 225–30
multifactor 208–61

multiple linear regression 119–21
multivariate see multivariate

analysis of variance (MANOVA)
nested (hierarchical) designs

214–15
partly nested designs 313–15
presentation of results 496
randomized complete block

designs 272–3
robust 195–6
simple linear regression 88–9
single factor (one way) designs

173–88, 191–5, 204–7
specific comparisons of means

196–201
testing equality of group variances

203–4
tests for trends 202–3

ANCOVA see analysis of covariance
angular transformations 66
ANOVA see analysis of variance
arbitrary significance levels 53
arcsin transformation 66
association matrix

choice in principal components
analysis 451–2

decomposition 449–50
audiovisual aids 507–9
axis rotation, principal components

analysis 447–9

backward variable selection 139–40
bar graphs 500–2
Bayes Theorem 9, 54
Bayesian inference 27–31, 54–7

likelihood function 28, 54–5
posterior probability 28–9, 54–7
prior knowledge and probability 28

Bayesian information criterion (BIC)
139

beta distribution 11
bias-corrected bootstrap 26
binary variables, dissimilarity

measures 413
binomial distribution 11
biological population 14
biological significance 44
biplots 456
bivariate normal distribution 72–3
block designs

crossover designs 296–8
factorial randomized block designs

290–2
generalized randomized block

designs 298
incomplete block designs 292
Latin square designs 292–6
randomized complete block (RCB)

designs 262–90
blocking, efficiency of 285–6
blocking factor, time as 287
Bonferroni procedure 49–50
bootstrap estimator 25–6
Box–Cox family of transformations 66
boxplots 60–1
Bray–Curtis dissimilarity 413, 483–5

Canberra distance 413
canonical correlation analysis 463–6
canonical correspondence analysis

(CCA) 467–8, 492
categorical data analyses 380–400
categorical predictors

linear regression 135–7
logistic regression 368, 371

cell plots
factorial design 251
randomized complete block design

277
censored data 69–70

comparing two or more
populations 70–1

estimation of mean and variance 70
center of distribution 15–16
centering variables 67
Central Limit Theorem 18, 20
central t distribution 36
centroid 402
chi-square (�2) distribution 12–13,

20–1, 38
chi-square (�2) statistic 380, 388
chi-square dissimilarity 413
City block distance 412–13
classical scaling 474–6
classical statistical hypothesis testing

32–4
classification analysis 488

cluster analysis 488–91
discriminant function analysis

435–41

Index



classification functions, discriminant
analysis 440

cluster analysis 488–9
agglomerative hierarchical

clustering 489–91
and scaling 491–2
divisive hierarchical clustering 491
non-hierarchical clustering 491

cluster sampling 156
coefficient of determination (r2) 91–2,

122
coefficient of variation (CV) 16–17
coefficients of linear combination

432–3
Cohen’s effect size 190–1
collinearity 127

dealing with 129–30
detecting 127–9

combining P values 50
combining results from statistical

tests 50–1
common population parameters and

sample statistics 15–16
complete independence, three way

contingency tables 393
completely randomized (CR) designs

173
comparison with randomized

complete block 286
complex factorial designs 255–7
compound symmetry assumption

281–2
conditional independence and odds

ratios, three way contingency
tables 389–93

conditional probabilities 9
confidence intervals

population mean 19–20
regression line 87
variances 22–3, 189

confidence regions, regression 76–7
confounding, experimental design

157–60
constrained ordinations 469–70, 492
contingency tables 381

analysis using log-linear models
393–400

three way tables 388–93, 395–400
two way tables 381–8, 394–5

continuous variables 7
dissimilarity measures for 412–13
probability distributions of 9–10

contrast–contrast interactions 254
controls 160–1
Cook’s D statistic 68, 95

correlated data models 375–6
generalized estimating equations

377–8
multi-level (random effects) models

376–7
correlation analysis 72

parametric and non-parametric
confidence regions 76–7

parametric correlation model 
73–6

power of tests 109–10
relationship with linear regression

106
robust correlation 76

correlation coefficient 72, 102
and regression slope 106
Kendall’s (�) 76
Pearson’s (r) 74–5
Spearman’s rank (rs) 76

correlation matrix 403, 405
correspondence analysis 459

canonical 467–8, 469–70
detrended 463
mechanics 459–60
reciprocal averaging 462
scaling and joint plots 461–2
use with ecological data 462–3

covariances
and correlation 73–5
assumption for randomized

complete block, repeated
measures and split-plot ANOVA
models 281–2, 318

crossover designs 296–8

data standardization, multivariate
analysis 415–17

decision errors
asymmetry and scalable decision

criteria 44–5
Type I and II errors 42–4

deductive reasoning 2
degrees of freedom (df) 19–20, 22
deleted residuals 95
dendrograms 488–9
detrended correspondence analysis

(DCA) 463
diagnostic graphics

multiple linear regression 125–6
simple linear regression 96–8

dichotomous variables, dissimilarity
measures for 413

discrete variables 7
discriminant function analysis 435

assumptions 441

classification and prediction
439–40

description and hypothesis testing
437–9

more complex designs 441
versus MANOVA 441

displaying summaries of data
498–500

dissimilarity matrices, comparing
414–15

dissimilarity measures
binary variables 413
comparison 414
continuous variables 412–13
mixed variables 413–14
testing hypotheses about groups of

objects 
(M)ANOVA based on axis scores

483
analysis of similarities (ANOSIM)

484–5
distance-based redundancy

analysis 485
MANOVA based on original

variables 483
Mantel test 483
multi-response permutation

procedures 483–4
non-parametric MANOVA 485–7

distance-based redundancy analysis
485

distance matrices, comparing 414–15
distance measures 409, 412–13
divisive hierarchical clustering 491
Dixon’s Q test 68
dotplots 60
dummy variables 135–7
Duncan’s Multiple Range test 200
Dunn–Sidak procedure 50
Dunnett’s test 201

eigenvalue equality 452–3
eigenvalues 128–9, 405–6, 450, 452,

454
eigenvectors 406–9, 450–1, 461–2
empiric models 2
enhanced multidimensional scaling

convergence problems 482
enhanced algorithm 476–8
interpretation of final

configuration 478, 481–2
stress 477

error bars 504–6
alternative approaches 506–7

estimation
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methods for 23–5
resampling methods 25–7
types of 15

Euclidean distance 412, 475, 483
examples (see also examples, worked)

aphids, effects of tree species and
time on abundance 306, 315

barnacle larvae, effects of copper
159–60

bats, dependence on area and
woodland disturbance 401–2

beavers, effect on aquatic
geochemistry 443–4

benthic invertebrates, effects of
fish 161–2

birds
spatial variation in Wisconsin

counts 265
species richness and habitat

variables 142
caddisflies, effects of competition

and hydroperiod on body mass
and survival 303, 309, 315

caterpillar, effects of sex,
population, and temperature
on growth 255

cladocerans, effects of kairomones
and body mass on morphology
339

copepods grazing on
dinoflagellates 4–5

coral reef fish, variation in
recruitment 209–12

crayfish, hormone levels in 157
elephant seals, association between

survival and mating success
382–5

eutrophication in lakes 8
fir trees, growth in response to N

and P 252–4
fish, similarity of fish assemblages

between sites 476
floral diversity, correlation

between floral similarity and
intensity of sampling 415

fossil invertebrates, effect of
salinity, lake level and swamp
development on community
structure 466

frogs, contribution of survivorship,
size, and larval period to
separation of species 441

grassland plants, competition
among 245–6

intertidal algae

effects of herbivore removals 322
variation in recruitment on

rocky shores 208–9
intertidal molluscs, effects of

harvesting on abundance 167
Jerusalem Artichoke, effects of

inflorescence removal on
asexual investment 303

leaf miners, effects of leaf damage
on mortality 263

limpets
distribution on rocky shores

65–6
effect of enclosure size on

growth 208
effects of intraspecific

competition on growth 198
marine invertebrates, larval

settlement in response to
microbial films 37

marsh plants, effects of herbivores
and nutrients on densities
335–6

mayfly larvae, life history responses
to predation and food
reduction 425

mussels and barnacles, effects of
flow and tidal height 302–3

oysters, variation in abundance
through mangrove forests
224–5

perennial herb
effects of flower position on fruit

and seed production  223
effects of leaf damage and

flowering order on floral traits
340

effects of plant diversity and
physicochemical variables on
presence of exotic species 365

phytoplankton, effects of sewage
159–60

plants, effects of fire 158–60
rainforest seedlings, effects of land

crabs and light gaps on
recruitment 332–4

rodents
effects of illumination and seed

distribution on seed
consumption 332–4

effects of predation and time on
survival 332–4

salamanders
competition between 160–2
effects of density and initial size

on larval growth and
metamorphosis 290

effects of invertebrate food level
and tadpole presence on
growth 222

sawfly larvae, effect of sawfly
species and trees on foraging
behavior 223, 229, 236

seastars, effects of mussel
recruitment on abundance
263

seed availability, effects of
microsite and time 328–31

smallmouth bass, relationship
between nests and habitat
variables 145

squirrels, effect of food abundance,
age, and reproductive history
on breeding success 374–5

stream insects, spatial variation in
density 219

trees
effects of light and seedling

height on sapling growth 222,
240

effects of temperature on
respiration rates 305, 309

variation in leaf structure 219
turtles, dependence of growth rate

on sex, site, and year 375
understory plants, effects of

competition on hummingbird
visits and seed production
296–7

warblers, contribution of
vegetation attributes to
habitat discrimination 440

weevil parasitoids on alfalfa plants,
effects of honeydew 263–4,
329–31

wildlife underpasses, effectiveness
in relationship to human
activity 401–9

examples, worked
abalone, abundance in marine

protected areas  165–6
annual plants, effects of

temperature, CO2, and biomass
on developmental age 354

ants, effects of predators, soil type
and light level on colony size
and herbivory of host plants
328–9

beetles, effects of experimental fire
on community structure 468
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examples, worked (cont.)
birds

abundances in different kinds of
forest patches 111, 115–7,
121–2, 124–7, 132, 135–41,
145–9, 372–4

characterization of assemblages
in forests 447–55, 474, 478–82,
486–91

effects of eucalypt flowering on
forest bird communities 
322–6

Cane toads, responses to hypoxia
306–10, 321, 356

chemistry of forested watersheds
21–3, 31–2, 60, 62–3, 66–9, 401,
420, 444–53, 463–4

coarse woody debris in lakes,
relationship with tree density
and other habitat variables
78–91, 100–3

Coolibah trees, occurrence of dead
trees in different sections of
floodplain 382–7, 394

copepod larvae, effects of food and
sibships on age at
metamorphosis 223, 258–9

diatoms, effects of heavy metals in
rivers 173–83, 206–7

flying squirrels, effects of logging
and time on age structure
388–93, 398–9

frogs in burned and unburned
catchments 266–74, 278–9,
281–8

fruitflies, effects of number and
types of mating partners on
longevity 340–7

heavy metals in marine sediments,
differences between locations
426–39

land crabs on Christmas Island,
relationship to burrow density
72–6, 447–50

leaf morphology of plants,
variation among functional
groups and ecosystems 243,
401–23, 426, 429–30, 435–40

limpets
effects of season and adult

density on fecundity 223–36,
241, 251–4

effects of trampling on
abundance 303–5, 310–15

variation in abundance on oyster

shells attached to mangroves
225–37, 253–4, 256–7

marine invertebrates
abundance in response to

nutrients 242–7
recruitment of polychaetes in

response to microbial films
176–81, 198, 202, 205, 
497–9

species richness in mussel
clumps 78–84, 94–8, 104–5,
108, 151

mites, effects of leaf domatia on
abundance 264–76, 283, 299

mussels, effects of crab predation,
location and size on
attachment strength 355–6

oldfield insects, effects of habitat
fragmentation on richness
293–5

palm seedling, survivorship in
different successional zones
240–1

perennial shrub, effects of
herbivory and plant size on
fruit production 357–8

plant functional groups,
relationship between
abundance and habitat
variables 111–14, 118–21,
124–7, 130, 135, 153

plant regeneration after fire,
comparison of ant and
vertebrate dispersal 382–7

plant reproduction, effects of
clipping and emasculation on
flower, fruit, and seed
production 435

pond invertebrates, effects of
hydroperiod and predation
254–5

predatory gastropods, fecundity
38–9, 45, 61  

rare plants, relationship between
genetic and geographic
distances 414, 478–9, 488–90

rodents
effects of distance to canyon,

habitat fragmentation and
vegetation cover on presence
365–8, 447–55, 460–1, 467–71,
474–81

effects of habitat type and
location on abundance 327–8

saltmarsh plants, effects of

parasites, patch size, and zone
on biomass 435

sea urchins
effects of food  and initial size on

inter-radial sutures 340–7, 350
effects of grazing 209–20

seabirds, energy budgets when
breeding 38, 40, 61

species richness, association
between local and regional
133–4

spiders
effect of lighting on web

structure 38, 41
effects of density and predator

reduction on spiderling
growth  290–2

effects of predation by lizards
and scorpions on
presence/absence 360–3

wildebeest carcasses, cross-
classification by sex, predation
and health 388–93, 395–9

Expectation–Maximization (EM)
algorithm and missing data
421–3

experimental design 157–64
controls 160–1
efficiency of blocking 285–6
independence 163
power analysis 166–8
problem of confounding 157–60
randomization 161–3
reducing unexplained variance 164
replication 158–60

experiments and other tests 5–7
exploratory data analysis 58–62
exponential distribution 11

F distribution 12–13, 186, 188
F-ratio statistic 38–9, 204
F-ratio test 42

single factor ANOVA 186–7
factorial ANOVA 235–6, 237

nested ANOVA 215–16
partly nested ANOVA 315–18
randomized complete block and

repeated measures ANOVA 
274

factor analysis 458–9
factor effects 188

factorial models 247–9
fixed effects 190–1
nested models 216–18
random effects 188–90
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factorial designs 
analysis of covariance 354–5
analysis of variance 230–2
assumptions 249–50
comparing ANOVA models 241
complex designs 255–7
factor effects 247–9
fractional designs 257–8
interpreting interactions

exploring interactions 251–2
simple main effects 252–4
unplanned multiple comparison

252
linear models 225–30
mixed factorial and nested designs

258–9
null hypotheses 232–7
power analysis 259–60
relationship with nested design

261
robust 250
specific comparisons on main

effects 250–1
unbalanced designs 241–7

factorial randomized block designs
290–1

falsification 2–3
alternatives to 4–5

field experiments 6
Fisherian hypothesis testing 33–4
Fisher’s Protected Least Significant

Difference test (LSD test) 200
fixed X assumption, regression 94
fixed covariate (X), ANCOVA models

349
fixed effects 190–1
fixed effects models 176–7

factorial designs 232–6, 237–40
forward variable selection 139
fourth root transformations 65
fractional factorial designs 223,

257–8
frequency analyses 380–400

G2 statistic 364, 367, 388
gamma distribution 11
Gauss–Newton algorithm 151–2
Gaussian distribution 10
generalized additive models (GAMs)

372–5, 379
generalized estimating equations

(GEEs) 377–9
generalized linear models (GLMs)

77–8, 359–60, 378–9
logistic regression 360–71

Poisson regression 371–2
generalized randomized block

designs 298
goodness-of-fit, logistic regression

368–70
goodness-of-fit tests, single variable

381
graphical displays 58–62

assumptions of parametric linear
models 62–4

principles 499
types of 500–4

graphics packages 508
working with color 508–9

group effects for a fixed factor 190–1
group means, specific comparisons of

196–201
group variances, testing equality of

203–4

Hampel M-estimator 16
hierarchical partitioning 141–2
histograms 59–60
Hodges–Lehmann estimator 16
Hosmer–Lemeshow statistic 369
Hotelling–Lawley trace 431
Huber M-estimator 16
hybrid multidimensional scaling 478
hybrid statistical hypothesis testing

34
hypotheses 3–4
hypothesis testing 32–57

Bayesian 54–7
statistical 32–54

hypothesis tests
for a single population 35–6
for two populations 37–9

imputation (missing observations)
420–1

incomplete block designs 292
independence, experimental design

163
independence assumption

factorial ANOVA models 249
linear models 64
linear regression models 93–4
nested ANOVA models 218
randomized complete block and

repeated measures ANOVA
models 280

single factor ANOVA models 193–4
indicator variables 135–7
inductive reasoning 2
influence

multiple regression 125
simple regression 95–6

interactions in factorial designs
251–2

simple main effects 252–4
treatment–contrast and

contrast–contrast interactions
254–5

interactions in multiple regression
130–1

probing interactions 131–3
interactions in partly nested designs

321
interactions in randomized complete

block designs
treatment by block interactions

274–7
unreplicated designs 277–80

intercept 87
interquartile range 17
interval estimates 15

jackknife estimator 26–7
jackknifed classification function 440
Johnson–Neyman procedure, Wilcox

modification 350–1
joint plots, correspondence analysis

461–2

Kendall’s correlation coefficient (�) 76
kernel estimation 59–60
kernels (smoothing) 108–9
Kolmogorov–Smirnov (K–S) test 381
Kruskal–Wallis test 195–6
Kruskal’s stress 477
Kuhnian approach to scientific

method 4
Kulczynski dissimilarity 413
KYST algorithm 476–7

L-estimators 15
laboratory experiments 6
Lakotsian approach to scientific

method 4
Latin square designs 292–6
layout of tables 497–8
least absolute deviations (LAD) 104–5
leverage 194

multiple regression 125
simple regression 95–6

likelihood functions 28, 54–5
likelihood inference 52
likelihood principle 52
likelihood ratio statistic 364
line graphs 502

INDEX 531



linear combinations of variables,
multivariate analysis 405–6

linear effects model
nested designs 210–13
partly nested designs 310–13
randomized complete block (RCB)

designs 269–71
single factor ANCOVA designs

342–6
single factor designs 178–84

linear models 77–8
ANCOVA models 342–7
assumptions

homogeneity of variances 63
independence 64
linearity 64
normality 62–3

definition 77
factorial ANOVA models 225,

227–230
fixed effects ANOVA models 176–7
multiple regression 114, 117–19
nested ANOVA models 210–14
partly nested ANOVA models

310–13
presentation of results 494–7
random effects ANOVA models

176–7
randomized complete block and

repeated measures ANOVA
models 268–72

simple regression 80, 82–7
single factor ANOVA models

178–81, 183–4
linear models for factorial designs

225–7
model 1 – both factors fixed 227–9
model 2 – both factors random 229
model 3 – one factor fixed and one

factor random 229–30
linear regression analysis 78

analysis of variance 88–9
assumptions 92

fixed X 94
homogeneity of variance 93
independence 93–4
normality 92–3

linear model for regression 81–5
null hypotheses 89–90
power analysis 109–10
presentation of results 493–6
relationship with correlation 106
residual plots 96–8
robust regression 104–6
scatterplots 96–7

simple linear regression 78–82
transformations 98
weighted least squares 99–100
variance explained 91–2
(see also multiple linear regression

analysis)
linear regression diagnostics 94–5

influence 95–6
leverage 95–6
residuals 87, 95–6

linear regression models 81–5
comparing models 90–1
diagnostic graphics 96–8
estimating model parameters 85

confidence intervals 87
intercept 87
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